Step-by-Step Guide to Solar Aircon Setup

sacada2

Updated on:

SOLAR SET UP

Building a solar setup to power an air conditioning (AC) unit requires careful planning, as ACs consume a significant amount of electricity. Below is a step-by-step guide to help you design and install a solar system capable of running an AC unit.


Step 1: Determine Your AC’s Power Requirements

Before designing your solar system, you need to know how much power your AC consumes.

  1. Check the AC’s nameplate or manual for:
    • Running Watts (e.g., 1,000W for a small unit, up to 3,500W for a large one).
    • Starting Surge (if applicable, typically 1.5–3x running watts for inverter ACs, higher for conventional units).
    • Voltage (usually 120V or 240V).
  2. Calculate daily energy consumption:
    • If your 1,500W AC runs for 8 hours/day:
      1,500W × 8h = 12,000Wh (12 kWh/day).

Step 2: Size Your Solar Panel Array

Solar panels must generate enough energy to cover your AC’s needs, accounting for inefficiencies.

  1. Estimate daily sunlight hours (e.g., 5 peak sun hours/day).
  2. Calculate required solar panel wattage:
    • Total Wattage Needed = Daily Consumption ÷ Sunlight Hours ÷ Efficiency Loss (0.8)
      Example: 12,000Wh ÷ 5h ÷ 0.8 = 3,000W (3 kW) of solar panels.
  3. Choose panels (e.g., ten 300W panels or six 500W panels).

Step 3: Select a Battery Bank (For Off-Grid or Backup)

If you want to run the AC at night or during cloudy days, you’ll need batteries.

  1. Determine usable battery capacity (lead-acid = 50% depth of discharge, lithium = 80%).
    • For 12 kWh/day with lithium:
      12,000Wh ÷ 0.8 = 15,000Wh (15 kWh) battery bank.
  2. Choose battery voltage (typically 24V or 48V for larger systems).
  3. Pick batteries (e.g., four 5kWh lithium batteries at 48V).

Step 4: Choose an Inverter

The inverter converts DC (from panels/batteries) to AC for your air conditioner.

  1. Match inverter voltage to battery bank (e.g., 48V).
  2. Ensure continuous wattage rating exceeds AC’s running watts (e.g., 3,000W inverter for a 1,500W AC).
  3. Account for surge power (if your AC has a high startup surge, choose an inverter with a higher surge rating).
  4. Type of inverter:
    • Off-grid: Requires batteries.
    • Hybrid: Can use grid + solar.
    • Grid-tied: No batteries but may not work during outages.

Step 5: Charge Controller (For Battery Systems)

If using batteries, a charge controller regulates power from panels to batteries.

  1. Type:
    • PWM (cheaper, less efficient).
    • MPPT (more efficient, especially for larger systems).
  2. Sizing:
    • Current = Solar Array Wattage ÷ Battery Voltage
      Example: 3,000W ÷ 48V = 62.5A → Choose a 70A MPPT controller.

Step 6: Wiring and Safety Components

  1. Cables: Use thick, low-resistance cables (e.g., 4 AWG for high-current connections).
  2. Fuses/breakers: Install between:
    • Solar panels and charge controller.
    • Battery and inverter.
  3. Grounding: Essential for safety.

Step 7: Installation

  1. Mount solar panels on a roof or ground mount (south-facing in the Northern Hemisphere, tilt angle optimized for your latitude).
  2. Connect components in this order:
    • Panels → Charge Controller → Battery Bank → Inverter → AC Unit.
  3. Test the system with a multimeter before connecting the AC.

Step 8: Monitor and Maintain

  1. Monitor energy production/consumption (some inverters have built-in monitoring).
  2. Clean panels periodically.
  3. Check battery levels (if applicable).

Example Setup for a 1,500W AC

  • Solar Panels: 3,000W (10 × 300W panels).
  • Battery Bank: 15 kWh lithium (48V).
  • Inverter: 3,000W pure sine wave (48V, 6,000W surge).
  • Charge Controller: 70A MPPT.
  • Wiring: 4 AWG copper cables, 150A fuses.

Additional Tips

  • Consider an inverter AC (more efficient, lower startup surge).
  • For grid-tied systems, check local net metering policies.
  • If your AC is 240V, ensure the inverter supports it.
  • Start small (e.g., power just the AC during the day) to reduce costs.

Solar-Powered AC System Diagram

┌───────────────────────────────────────────────────────────────┐
│ SOLAR POWER SYSTEM │
├─────────────────┐ ┌─────────────────┐ ┌─────────────┤
│ SOLAR PANELS │ │ BATTERY │ │ AC UNIT │
│ (3000W Total) │───────▶ BANK (48V) │──────▶ (1500W-240V)│
└────────┬────────┘ └────────┬────────┘ └─────────────┘
│ │
▼ ▼
┌─────────────────┐ ┌───────────────────┐
│ CHARGE │ │ INVERTER │
│ CONTROLLER │ │ (3000W Pure Sine) │
│ (MPPT, 70A) │──────▶ (48V DC → 240V AC) │
└─────────────────┘ └───────────────────┘


┌─────────────────┐
│ DC DISCONNECT │
│ (FUSE/BREAKER) │
└─────────────────┘


Key Components & Connections

  1. Solar Panels (3,000W Total)
    • Connected in series/parallel to match charge controller voltage (e.g., 48V).
    • Wire gauge: 10 AWG (for panels) → 4 AWG (for main DC lines).
  2. Charge Controller (MPPT, 70A)
    • Regulates power from panels to batteries.
    • Critical: Ensure max input voltage (Voc) of panels < controller limit.
  3. Battery Bank (48V, 15kWh Lithium)
    • Stores energy for nighttime/cloudy days.
    • Fused (e.g., 150A breaker) between battery and inverter.
  4. Inverter (3,000W Pure Sine Wave, 48V → 240V AC)
    • Converts DC to AC. Must handle AC’s startup surge (if any).
    • Directly powers the AC unit.
  5. AC Unit (1,500W, 240V)
    • Preferably an inverter-type AC (efficient, low surge).
  6. Safety Components
    • DC disconnect switch (between panels and charge controller).
    • Fuses/breakers on all high-current paths.
    • Grounding for panels/inverter/batteries.

Wiring Steps

  1. Solar Panels → Charge Controller
    • Connect panels in series/parallel to reach ~48V (e.g., 4 panels in series × 12V each).
    • Use 10 AWG solar cables with MC4 connectors.
  2. Charge Controller → Battery Bank
    • Heavy-duty 4 AWG cables (short runs to minimize voltage drop).
  3. Battery Bank → Inverter
    • 4 AWG or thicker cables (3,000W at 48V = ~62.5A).
  4. Inverter → AC Unit
    • Standard 240V AC wiring (follow local electrical codes).

Optional Add-Ons

  • Automatic Transfer Switch: For hybrid systems (switches to grid if solar/battery is low).
  • Monitoring System: Tracks solar production/battery levels (e.g., Victron BMV).

Visual Sketch

For a more detailed visual, you can use tools like:

  • DIY Sketch: Draw it out based on the blocks above.
  • Software: Use SolarDesignToolPVsyst, or even Microsoft Visio.

Would you like a more detailed schematic with wire colors/sizes or a recommendation for component brands?

okay please

Here’s a detailed schematic with wire sizes, safety components, and recommended brands for a 3,000W solar system powering a 1,500W AC unit (240V).


Detailed Solar AC System Schematic

┌─────────────────────────────────────────────────────────────────────┐
│                        OFF-GRID SOLAR SYSTEM (48V)                  │
├───────────────────┐   ┌───────────────────┐   ┌───────────────────┐
│  SOLAR PANELS     │   │   CHARGE          │   │   LITHIUM         │
│  (10x 300W)       │   │   CONTROLLER      │   │   BATTERIES       │
│  Series-Parallel  │──▶│   (MPPT, 70A)     │──▶│   (4x 5kWh, 48V)  │
│  Voc: ~96V        │   │   Victron SmartSolar │   │   EG4 or Battle Born│
└────────┬──────────┘   └────────┬──────────┘   └────────┬──────────┘
         │                       │                        │
         ▼                       ▼                        ▼
┌───────────────────┐   ┌───────────────────┐   ┌───────────────────┐
│   DC DISCONNECT   │   │   BATTERY FUSE    │   │   INVERTER        │
│   (63A Breaker)   │   │   (150A Class T)  │   │   (3,000W 48V)    │
│   Midnite Solar   │   │   Blue Sea Systems│   │   Victron MultiPlus│
└────────┬──────────┘   └────────┬──────────┘   └────────┬──────────┘
         │                       │                        │
         ▼                       ▼                        ▼
┌───────────────────┐   ┌───────────────────┐   ┌───────────────────┐
│   GROUND BUS BAR  │   │   SHUNT METER     │   │   AC DISCONNECT   │
│   (Lightning/ESD) │   │   (Victron BMV)   │   │   (30A Breaker)   │
└───────────────────┘   └───────────────────┘   └────────┬──────────┘
                                                         │
                                                         ▼
                                                  ┌───────────────────┐
                                                  │   AIR CONDITIONER │
                                                  │   (1,500W 240V)   │
                                                  │   Inverter-Type   │
                                                  └───────────────────┘

Key Details & Recommendations

1. Solar Panels (3,000W Total)

  • Configuration: 5S2P (5 panels in series × 2 parallel strings).
    • *Each 300W panel: Voc=40V, Vmp=32V → 5S = 200V Voc (safe for 150V max controllers)*.
  • Cables:
    • Panel to Combiner Box: 10 AWG PV wire (UV-resistant).
    • Combiner to Charge Controller: 8 AWG (for 96V/40A).
  • Recommended Brands:
    • Panels: Canadian Solar, REC, or Qcells (300W+).
    • Combiner Box: Midnite Solar MNPV6 (with breakers).

2. Charge Controller (MPPT, 70A)

  • Input: Max 150V, 70A output (3,000W ÷ 48V = 62.5A).
  • Cables: 6 AWG (charge controller to battery).
  • Recommended:
    • Victron SmartSolar 250/70 (best efficiency).
    • Budget: EPEver Tracer 6415AN.

3. Battery Bank (48V, 15kWh)

  • Configuration: 4x 48V 5kWh lithium batteries in parallel.
  • Cables: 2/0 AWG (battery to inverter).
  • Recommended:
    • EG4 LL-S 48V 100Ah (cheaper) or Battle Born 48V (premium).

4. Inverter (3,000W Pure Sine Wave)

  • Surge Capacity: 6,000W (for AC startup).
  • Cables: 2/0 AWG (battery to inverter).
  • Recommended:
    • Victron MultiPlus 48V/3000VA (hybrid capability).
    • Budget: Giandel 3,000W 48V.

5. Safety Components

  • DC Disconnect: Midnite Solar 63A breaker (between panels/charge controller).
  • Battery Fuse: 150A Class T (between battery/inverter).
  • AC Disconnect: 30A double-pole breaker (inverter to AC unit).
  • Grounding: 6 AWG bare copper wire to grounding rod.

6. Monitoring

  • Victron BMV-712 (battery state of charge).
  • SmartShunt (optional for Bluetooth monitoring).

Wiring Color Guide

  • Solar (+): Red (10 AWG).
  • Solar (-): Black (10 AWG).
  • Battery (+): Red (2/0 AWG).
  • Battery (-): Black (2/0 AWG).
  • Ground: Green/bare (6 AWG).

Tools You’ll Need

  1. Wire Crimpers (for lugs).
  2. Multimeter (to check voltage/current).
  3. Conduit (for outdoor cable protection).

Final Notes

  • Permits: Check local codes for grid-tied/hybrid systems.
  • Efficiency: Use an inverter-type AC (e.g., Midea U-Shaped) to reduce surge.
  • Scalability: Add more panels/batteries later if needed.

Here’s a complete shopping list with links (where available) for building a 3,000W solar system to power a 1,500W AC unit. Prices are approximate and vary by region.


Core Components

1. Solar Panels (3,000W Total)

2. Charge Controller (MPPT, 70A)

3. Battery Bank (48V, 15kWh Lithium)

4. Inverter (3,000W Pure Sine Wave, 48V)


Safety & Wiring

5. Combiner Box & Breakers

6. Fuses & Disconnects

  • 150A Class T Fuse (Blue Sea Systems) (~$50)
  • 63A DC Disconnect (Midnite Solar) (Amazon) (~$60)
  • 30A AC Disconnect (for inverter output) (Amazon) (~$20)

7. Cables & Lugs

  • Solar Panel Cables (10 AWG, MC4 Connectors) (Amazon) (~$50)
  • Battery Cables (2/0 AWG, Red/Black) (Amazon) (~$100 for 20ft)
  • Copper Lugs (2/0 AWG, Crimp-On) (Amazon) (~$30)

8. Grounding & Mounting

  • 6 AWG Bare Copper Ground Wire (Home Depot) (~$30)
  • Solar Panel Mounting Rails (IronRidge) (~$200 for 10 panels)

Monitoring & Extras

9. Battery Monitor

  • Victron BMV-712 (Amazon) (~$180)

10. Tools


Total Estimated Cost (Before Tax)

Category Budget Option Premium Option
Solar Panels $1,800 $2,400
Charge Controller $320 $550
Batteries $4,500 $9,000
Inverter $700 $1,800
Safety/Wiring $500 $600
Total $7,820 $14,350

Where to Buy


Final Notes

  1. DIY vs. Professional Install: If unsure, hire an electrician for high-voltage (48V+) connections.
  2. Permits: Check local laws for grid-tied systems.
  3. Scalability: Add more panels/batteries later if needed.